

ICPEA 2024

2024年第七届电力与能源应用国际会议

山西太原 | 2024年10月18-20日

ICPEA会议以征收高质量英文学术研究论文和领域内专家报告分享 为主,前几届会议征收的文章都已被成功出版和EI Compendex, Scopus数据库检索。2024年第七届电力与能源应用国际会议将由 太原理工大学主办,基于 2021年在太原成功举办第五届 IEEE El² 会 议(1000多人参加)的经验,相信ICPEA将能再次实现为电力和能源 领域的学术研究做贡献。目前会议开始接受投稿。太原理工大学诚邀 致力于电力和能源应用领域的所有研究人员,专家,学者,工程师和 学生踊跃投稿摘要或论文,或注册为听众参会,太原见!

奖项

- 最佳青年科学家奖
- 最佳论文奖 6
- 最佳学生论文奖
- 会议突出贡献奖

- 优秀宙稿人
- 最佳组织奖
- 最佳口头报告
- ■最佳海报展示

投稿截止日期:2024年4月20日

1.全文(出版及报告) 2.摘要(仅报告)

投稿系统: https://easychair.org/conferences/?conf=icpea2024

出版和检索

本次会议将采取同行评议的审稿方式, 收录的文章将出版在IEEE会议论文集, 并由 IEEE Xplore, Ei Compendex, Scopus 等知名数据库检索。

大会委员会成员

大会主席

王鹏,太原理工大学(IEEE Fellow) 韩肖清,太原理工大学(IEEE PES太原分部主席)

大会共同主席

朱继忠,中国华南理工大学,IEEE Fellow 刘玉田,中国山东大学,IEEE Senior Member 张昊春,中国哈尔滨工业大学, Member of AAAS, ASME, AIAA

程序委员会主席

年珩,浙江大学 Hartmut Hinz, 德国法兰克福应用科技大学 Yun Liu,中国华南理工大学 Yunxiao Zhang,中国福州大学

程序委员会联席主席

Kei Eguchi, 日本福冈工业大学, IEEE Senior Member Chonghui Song,中国东北大学 Philip W. T. Pong,美国新泽西理工学院 Guohua Zhou,中国西南交通大学

Muhammad Junaid,中国矿业大学, IEEE Senior Member Yao Zhao,中国上海交通大学 Wenlong Ming,英国卡迪夫大学 Rui Zhao,中国广东机电职业技术学院

区域主度

Li Liu,中国西安电子科技大学 Hongying He,中国湖南大学 Fengji Luo,澳大利亚悉尼大学

更多委员会请登录官网查看: http://www.icpea.org/committee.html

联系人

Carrie Qiu (邱老师) 电话: 86-13627777774

邮箱: icpea_secretary@outlook.com 网站: http://www.icpea.org

会议历史

第一届电力与能源应用国际会议 (2018年4月7-9日 | 香港) | El Compendex和Scopus检索

第二届电力与能源应用国际会议 (2019年4月27-30日 新加坡) | IEEE Xplore | El Compendex和Scopus检

第三届电力与能源应用国际会议 (2020年10月9-11日 | 韩国-线上会议) | IEEE Xplore | El Compendex和 Scopus检索

第四届电力与能源应用国际会议 (2021年10月9-11日 | 韩国-线上会议) | IEEE Xplore | El Compendex和 Scopus检索

第五届电力与能源应用国际会议 (2022年11月18-20 日 | 广州-线上会议) | IEEE Xplore | El Compendex和 Scopus检索 **ICPEA**

第六届电力与能源应用国际会议 (2023年11月24-26日 | 威海-线上会议) | IEEE Xplore | El Compendex和 Scopus检索

征稿主题 以下为部分征稿主题,但不仅限于以下主题:

1 电力电子学和转换器

- 电源转换器拓扑和设计 先进的功率转换器拓扑结构 器件 表表表表

- 电力电子器件和转换器 高压直流电源 低压直流电源 电动汽车电源转换器 非接触式电源

2 可再生能源系统

- 先进的可再生能源系统 可再生能源发电系统

3 电机与驱动

- 电机和驱动系统 运动控制、机器人、特殊驱动
- ■电动汽车的电力推进系统

4 电力电子应用

- 4 电力电子应用
 三汽车中的电力电子应用
 三汽车中的电力电子应用
 三飞机和航天器中的电力电子技术
 三可再生能源系统中的电力电子技术
 三对两生能源系统中的电力电子技术
 三离网和独立系统中的电力电子技术
 三智能家居和楼宇中的电力电子技术
 三智能家居和楼宇中的电力电子技术
 三电子镇流器和固态照明
 三高压直流与 FACT
 三电动交通
 三海洋应用(近海和船舶)
 三轨道车辆

- 按制和管理
 将控制方法应用于电力系统
 可再生能源并网
 智能电网安全分析与控制
 能源互联网应用的 ICT 技术
 估算和识别方法
 测量技术
 测量与控制
 直流电网的故障协调与保护
 功率因数校正技术
 电能质型

- ■电网和智能电网

- 电网和智能电网 微电网 储能系统 可靠性 标准和法规 智能电网 独立电源 不间断电源 (UPS) 电池和管理系统 (BMS)

日程安排

2024年10月18日 | 注册,收集会议资料 2024年10月19日 | 开幕词,主旨演讲和集体照,作者平行报告 (口头/海报)和颁奖典礼

